
Security Considerations in Managing COTS Software 1
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

Security Considerations in Managing COTS Software
Craig Miller, Cigital, Inc.

Copyright © 2006 Cigital, Inc.

2006-12-14

Security failures can have severe consequences whether they are rooted in COTS or custom code. This,
coupled with the ubiquity and opacity of COTS software, makes it a critical and difficult problem that an
organization ignores at its own extreme peril, however convenient that is to do.

Overview
Information technology tends to focus on new systems—the processes for designing, developing, testing
them, and making them secure has been the subject of thousands of books and the focus of hundreds of
processes. Building new systems is high-profile, difficult work that receives appropriate attention, but IT
operations of an organization rely most heavily on systems that are already in place—the legacy systems.
Legacy systems make up the vast bulk of the code base, and all new systems become legacy when they come
on line.

Getting security right in new systems is important, but it is equally important, and perhaps even more
difficult, to address security in legacy systems. Legacy systems are points of vulnerability in themselves and
gateways for attack on new systems. In a modern enterprise, data flows freely between systems, and business
processes are instantiated through the orchestration of multiple applications and components. Any point of
vulnerability—whether in the physical infrastructure, the underlying operating system and services, new
applications, or the oldest legacy application—can compromise the integrity of a process, the data, and the
enterprise.

A system may have operated securely for many years, but that is no guarantee that it will continue to do
so. The system may simply not have been the target of an attack, the integrity of design may have been
compromised by changes made over the years, or a change in an underlying component or service may
provide a new avenue of attack.

The issue of changes made to a legacy system is particularly important. By some estimates, 40% to 80%

of a system’s total lifetime cost is incurred after deployment [Glass 031]. That cost includes upgrades in
the underlying system (e.g., new releases of the database), bug fixes, the addition of new features, and
changes to accommodate users and other system interfaces. Taken collectively, these changes often rise to
the scale of a new system, but much of the work is done outside the new system development process, with
substantially less testing and oversight.

The security of legacy systems, then, is as important as that of new systems because they

• are central the organization’s operation

• make up the bulk of the code base

• provide a point of entry to the enterprise

• have changed more than most of the organization realizes

• often are changed without the scrutiny given new systems

• are impacted by changes in external systems, services, and infrastructure

• involve old components and technology that may never have been tested

In most organizations, COTS (commercial off-the-shelf) code accounts for the bulk of the legacy
environment. The code that the organization develops and maintains in-house is usually the predominant
focus of attention. Often the custom code base is prodigious, overshadowing in its impression the COTS
elements of the organization’s enterprise systems. The attention, however, is often misbalanced. In many

1. #dsy623-BSI_glass03

#dsy623-BSI_glass03

Security Considerations in Managing COTS Software 2
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

organizations, the COTS code represents a much larger code base that is more complex and riskier than the
internally developed code base.

If you only measure the business-process-specific applications, the body of COTS software may not, in fact,
match up to the custom code, but remember that all application software runs on a platform, and that in a
modern IT operation, that platform is much more than just the operating system. Platform vulnerabilities
are a common point of attack, the methods are widely shared among the hacker community, and the
consequences can be severe given the level of access and control than can be obtained if the platform is
compromised.

Many organizations trust their COTS code; they assume that it works perfectly and securely. It is convenient
and seductive to make this assumption. Worrying about COTS software can keep you up at night and double
the workload during the day.

Addressing COTS software security is a very different problem than addressing security in code developed
in-house. The problem posed by COTS software is easier in some ways but more difficult in others. In
custom code, the organization is the developer, is responsible for all aspects of security, and must work from
code out—and most organizations do not really understand secure code development. With COTS code the
organization does not have to work with the code; that is the responsibility of the software vendor. Certainly,
that is an advantage, since the organization is not called on do something very difficult and likely outside
its skill set, but it is also a huge disadvantage. While the organization may not be responsible for code-level
security, it does not have an easy way to verify that it was done right, and the organization is the loser if
there is a problem.

Why is COTS Software Risky?

COTS Software Presents an Attractive Point of Attack
As security professionals, we tend to focus on the ease with which systems and software security can be
compromised. The attack patterns and the tools to implement them are well known to us. When asked about
how something can be attacked we say—“Oh, just do A, B, and C (using package D) and you’ll have root,”
as if that were simple. It is simple to a professional, but it is not easy in objective terms. The real pros are
specialists with considerable knowledge, and the process of breaking code is difficult and time-consuming
and has many dead ends. It is hard work.

Hard work demands a high payoff. The payoffs come in the form of intellectual satisfaction and notoriety
(even if anonymous) or, more tangibly, damage to the attacked party or access to valuable information.
Discovering how to break a COTS package is usually far more attractive than breaking a custom piece of
code. Compromises in major packages are well publicized and there is pleasure in “demonstrating” that you
are smarter than the security experts at XYZ Corporation. Again, more tangibly, the major COTS packages
typically manage important information and connect to more systems. They are central in both the business
and technical sense. Further, the information and experience obtained in one attack can be used again on the
same package elsewhere.

COTS software is generally a more attractive target than custom code.

COTS Products Are Well Known and Widely Available
The one essential ingredient in attack is access. Access, however, means two different things. Obviously,
you must have access to the actual system being attacked. The means for exploring these options are well

documented elsewhere [Hoglund 042]. The other aspect of access is the ability to explore the functionality
or disfunctionality of the code. This can be done on the system being attacked, but this is not necessarily the
case. A version on any system can be used for experimentation. The attacker may be able to use a locally
available version, perhaps with legitimate access, to conduct experiments, do reverse engineering, and test
attacks. In one case, reviewed recently, the code in question was a thick client. There are literally thousands

2. #dsy623-BSI_hoglund04

#dsy623-BSI_hoglund04

Security Considerations in Managing COTS Software 3
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

of versions available. In some cases, it is possible to download a demo version or purchase an inexpensive,
feature- or time-limited version that contains much of the same code.

The other implication of the wide availability of COTS packages is that information is shared among the
black hat community. Vulnerabilities and information on viable attack patterns is shared, as is the code to
implement the attack.

Microsoft software is the most popular point of attack because of Microsoft’s marketplace dominance and
the complexity of the products. PowerPoint and Excel in particular have recently become common targets.
The ongoing battle between hackers and Microsoft has become so ritualized that the schedule of attacks has
fallen into a monthly pattern. For the convenience of systems managers Microsoft has developed a routine
of releasing patches on the second Tuesday of the month (“Patch Tuesday”). Hackers have responded by
unleashing their attacks in the following days to allow them the maximum time to act unimpeded.

It Is Difficult to Verify the Security of COTS Products
COTS products are generally black boxes to their customers. They can review neither the code nor the
architecture. In general, COTS buyers have to rely on the reputation of the developers, published security
reports, and security forums. Many software vendors provide public assertions of their security, but these are
rarely specific or quantitative. Vendors publish little or nothing about their coding practices as they relate to
security. Installation manuals for COTS products are also light on discussions of security.

In theory, black box testing is possible, as will be discussed later, but this can be very difficult for COTS
customers. The skills required are outside their experience, but that isn’t the principal problem, since they
can contract with specialists. The larger challenge lies in all the factors listed previously—the importance
of the operating context, the reliance on and interaction with the security infrastructure, and the impact of
custom scripting, configuration, and connectivity to external services and data stores. It can be very difficult
to test these often very large systems exhaustively in their complex operating context.

COTS Software Vendors Have Very Limited Liability
Among many product categories, there is established legal precedence for product vendors being held liable
for the direct and even consequential damages resulting from the failure of their products and sometimes
even damages resulting from misuse, particularly when that misuse is not explicitly proscribed. This is
not the case with software. Virtually all software comes with a user agreement that explicitly absolves the
software vendor of any liability, direct or consequential, even if that failure is a consequence of a known
flaw in the product. To use the software, the customer must agree to these terms, and, in general, affected
customers have not pursued legal remedies when software has failed. The language below is extracted
from an online legal document provided as a model for software product liability. It is consistent with the
agreements from several major vendors.

“To the full extent permitted by law, [Vendor] is not liable for any direct, indirect, punitive, incidental,
consequential, or exemplary damages (including without limitation loss of business, revenue, profits,
goodwill, use of system, or other economic advantage) as a result of or in connection with this software, even
if [Vendor] has knowledge of or could reasonably have foreseen the possibility of such damages, however
they arise.”

The consequences of this sort of limitation and a general business and legal environment that absolves
software providers from the liability of other product providers is that a level of failure unequalled in
any other product category is accepted and generally deemed the norm. COTS software is a target-rich
environment for malicious attack because it is large, complex, and built with fragile and changing technology
operating in complex environments that are also constantly changing, and because the liability of its
developers is limited by law and by the low expectations of the customers.

Cem Kaner [Kaner 993, Kaner 044] has taken on this sort of language, arguing that post-sale warranty
disclaimers are invalid and that post-sale limitations on remedies are suspect, having been rejected in several

3. #dsy623-BSI_kaner99

#dsy623-BSI_kaner99
#dsy623-BSI_kaner04

Security Considerations in Managing COTS Software 4
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

states. He argues that the Uniform Commercial Code (UCC) pertains and offers consumers considerably
greater protection.

COTS Software is Generic
COTS software is written without specific knowledge of the enterprise’s technical environment or operating
procedures. Therefore, COTS code does not typically address instance-specific features of the operating
environment. The developer of the COTS code does not know where and how you are going to use it, how
you are going to control access, how you will configure the operating system, or anything else specific about
your IT operation. So the code will likely lack the specific features necessary to take advantage of your
security infrastructure.

How and Why is COTS Software Attacked?
Understanding how and why systems are attacked is central to understanding COTS security issues. You
attack different software in different ways if your objective is to simply disable a system versus stealing data.
There is no unique way to categorize software attacks. A simple but useful taxonomy defines four categories,
listed below. The motivations and means of these attacks differ, so the tools and techniques to deter them
vary and the footprints of the attackers also vary.

System Modification Attacks
System modification attacks occur when an attacker takes advantage of a security hole to enter, take over,
and modify a target system. These are the most serious forms of attack. Malicious control of a system makes
it possible to install viruses, establish a trapdoor, modify account information either to provide illegitimate
access or disable legitimate use, replace known and trusted software with a doppelganger, steal confidential
information, corrupt data, or install software to monitor and report on usage or forward data on a continuing
basis. These are only a few examples of the types of damage that can be done if an attacker obtains control.
Lacking the time or skill to do something sophisticated, an attacker may simply use control to render a
system inoperable.

COTS systems can provide a point of entry for system modification attacks. The COTS systems of particular
interest here are the ones that are externally facing—the email system, the web server, the directory server,
the web services infrastructure, etc. Compromising these can potentially provide access to the deepest levels
of a system. Virtually no organization creates these general purpose, externally facing systems themselves,
and because a small number of products are so widely used, they are extremely attractive to attackers and
information on successful attacks is widely shared.

Invasion of Privacy Attacks
Invasion of privacy attacks involve access to information that is meant to be kept private. This includes
information such as system and account numbers, although these are generally enciphered or maintained
in a directory service, which provides a higher level of security than other systems. The more common
theft is application information, particularly financially relevant information. Customer and employee
names and other identifying information (social security numbers, employee numbers, etc.) and financial
account information are particularly attractive because they are valuable in commerce. These data are very
commonly managed by COTS systems. There are some critical differences between privacy attacks and
system modification attacks:

• You do not need to obtain complete control of a system to steal data.

• System logs are less likely to show footprints of data theft in privacy attacks than in system
modification attacks.

• A system modification attack may be considered successful if the only outcome is damage, while a
privacy attack must obtain accurate data and, ideally, conclude without immediate detection.

4. #dsy623-BSI_kaner04

Security Considerations in Managing COTS Software 5
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

• Corruption of the data may be as valuable as theft.

• COTS applications play a major role in protection against theft of data.

COTS systems typically maintain the data of interest. They serve to collect and concentrate the data in a
convenient place. Their security, including access control and possibly enciphering, is critical. All databases
and directory servers have their own security models and do not rely exclusively on the operating system
security. The interaction of the two is frequently subtle.

Denial-of-Service Attacks
Denial-of-service attacks seek to deny legitimate use of an application, system, computer, or
communications link. There are a wide variety of DDoS (distributed denial-of-service) attacks (SYN floods,
UDP floods, Teardrop Attacks, etc.), most of which seek to overwhelm a communications connection.
Many of these require only a single computer. For example, a SYN flood attack attacks a server by sending
multiple requests for connection to a server with forged and nonexistent sender addresses. Because the
sender addresses are not real, the server wastes time waiting for a response that never comes. No COTS
software is involved, but COTS software is central to application level floods. If COTS software on a server
can be corrupted (perhaps through the common buffer overflow), it may be induced to consume system
resources to the point of shutting the server down.

COTS software is also central to the initiation of a DDoS attack. DDoS are concurrent attacks on a single
system from multiple systems. Essentially, a large number of small, distributed systems all attempt to
connect to or invoke a service on the target computer over a short period of time. Typically, these involve
the co-option of multiple machines through the distribution of malware. Since multiple machines must be
compromised, the only realistic approach is through common software—and that means COTS.

Antagonism Attacks
Antagonism attacks are intended to annoy, harass, or embarrass legitimate users or service providers. They
are motivated by ego or malice rather than greed. Generally, they involve the introduction of spurious
content (audio or visual) such as obscene, derogatory, or mocking images or an endlessly repetitive sound.
These are almost universally delivered over the web and are based on corruption of the material on a site
or redirection to content stored elsewhere. The COTS points of attack are the web server and the content
management system (CMS) and potentially the database behind the CMS. These must be breached through a
hole in the web system security.

Mitigating risk
COTS software is ubiquitous in any organization, so only a comprehensive approach will be effective.
Looking at one COTS product out of context has very little meaning. COTS software management must
be part of a comprehensive software security risk management. This stands in contrast to the treatment
of code developed in-house. Certainly in-house software must be considered in the comprehensive risk-
management scheme, and certainly the operating context must be considered in looking at all software,
custom or COTS, but a point focus on custom systems is appropriate, particularly when they are new, as
the developing organization bears complete and unique responsibility for all aspects of security. There is
a further distinction in the approach to mitigation between the COTS and custom systems, rooted in the
types of testing and mitigation activities that are appropriate and feasible. Code-level review, rigorous white
box testing, etc. are appropriate for in-house code, but neither appropriate nor possible with COTS. The
emphasis, then, in COTS testing must be on a systemic approach.

The recommended approach is based on these 16 practices.

1 Identify the COTS Components
You can start in defining COTS by looking at the major packages—databases, web servers, (enterprise
resource planning (ERP) packages, etc. The list should be extended to include the smaller and less widely

Security Considerations in Managing COTS Software 6
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

used packages, as these can also compromise the integrity of the enterprise. Just because a package is small
does not mean that it is unimportant from a security perspective.

The last section of this paper talks about what COTS means. At first blush, this may seem obvious—COTS
is the ERP system or that big package you just wrote a million dollar check for, but COTS is much more than
that. In the early days of information technology, programs were monolithic; the boundaries were clear. That
is certainly not the case now. Processes at the enterprise levels were once constituted as single programs,
but now are frequently instantiated as an orchestration of many independent components; even apparently
monolithic blocks of code from a commercial source frequently incorporate code from other sources. It is
imperative to recognize the variety and breadth of COTS components.

2 Understand What Counts
Some systems maintain personal, business-private, and critical information; others do not. Some systems are
central to the organization’s business processes; others are not. Some can provide a point of entry to critical
infrastructure; some cannot. Understanding these distinctions is important. You cannot test and protect
everything, and it is neither efficacious nor cost-effective to try to do so. You must set priorities. In doing
so, it is important to understand the business and legal criticality of the different data and services addressed
with COTS. An understanding of the business and regulatory environment is important.

Determining what counts is not a simple task. It inherently requires a dialogue between the IT organization
and the business side of the enterprise, two organizations who speak different languages. Security is relative,
not absolute. The question “what counts” translates into “what level of risk is acceptable (or optimal).”
The answer to that question balances business considerations with technical considerations related to the
technical difficulty and cost of mitigation and, paradoxically, the risk introduced by the mitigation.

3 Understand How Things Connect
COTS systems connect with other COTS and custom components both technically (i.e., one calls the other)
or in the implementation of a process. Understanding these connections is critical to understanding how the
vulnerability in one component may affect other components and how changes in one component can expose
(or close) vulnerabilities in others.

The most common point of attack on software is through the input. The interfaces between components are
natural points for injecting malicious content to corrupt the data, disable the executable, or alter the behavior
of the program.

4 Operate a Secure Computing Infrastructure
The security of COTS software can be compromised if the underlying operating systems, network
components, and other elements of the computing infrastructure are not secure. There is little point in
building solid systems on mush. The COTS security effort must begin with the environment components.
Environment components in this sense certainly include the operating system, but the environment is much
more than just the platform. It must also include shared services related to security, message transport, data
management, backup, security, and other functions.

5 Control Access
Access control is a fundamental aspect of COTS (and all other) security. COTS systems generally assume
that access is controlled in the appropriate way. Access control means electronic systems for firewall
and authentication (including tokens and/or biometric means where appropriate). Just as importantly,
access control also involves human systems rooted in appropriate division of access and authority, clearly
delineated policies and procedures, and training, with frequent reinforcement, monitoring, and audit.

6 Ask the Vendor
This may be too obvious a suggestion, but surprisingly it is often overlooked. The way to ask is not simple
yes-no questions, but more specific ones. Ask for a list of security- related problems over the past year or

Security Considerations in Managing COTS Software 7
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

two years. Ask for a list of security-related patches. That problems were identified and fixed is good, but it
is irrational to assume, after a long and consistent history of security issues, that the latest one is, finally, the
last and that all is now well. Take the frequency of problems as an indication of potential problems, but take
the vendor’s diligence in addressing problems as a positive (and appropriate) factor.

7 Engage with the User Community and Security Community
Any significant COTS software package is addressed in at least one online forum. These should be consulted
in advance of the purchase decision, as part of the design of the installation, and on a continuing basis during
the operations and maintenance phase. Do not assume that all that is said in these forums is accurate, but
what is said there should be considered seriously.

8 Engage with Experts
There are myriad security specialists, both individuals and companies. For particularly critical issues, they
can provide advice during purchase, assist with the design of the implementation, and, where necessary,
assist with testing. Identifying good security consultants, however, is as challenging as identifying secure
software. How do you know who is good and whether they have the right capabilities for the specific
problem at hand? Checking credentials and reputation is an obvious step, but no firm is right for every
engagement. It is important to frame the question well when soliciting assistance. Be precise about what
you need, but be open to a creative response. A good security firm will bring its experience to bear on
the problem, helping to shape the scope of work, broadening it in some areas, narrowing it in others, and
sharpening the focus.

9 Test the Software
The ideal software testing is white box, but this requires access to the source code, which is often not
possible with COTS software. No one has found a method to achieve the equivalent level of review working
only with the executables. Given this limitation, the best remaining approach is black box testing, in which
ranges of data are injected and the results observed. Randomly generated inputs are one approach, but data
created specifically to test certain aspects of operation are generally more useful. This approach is practical
with smaller applications and entirely sufficient for small software services, but it is impractical for large
systems (e.g., ERP systems) because the range of inputs is far too large, particularly when the combinations
are considered.

An effective verification method and validation technique for COTS software is fault injection. Faults are
injected into a piece of software and the results are observed for anomalous behavior. The value is that that
the more tests you perform the more confident you are that the software will behave correctly in use. The
challenge is in the design of the faults. This requires an understanding of the software and, in particular, the
likely vulnerabilities and modes of failure.

10 Wrap the Software
Fault injections in the testing phase can identify problems, but end users are typically not able to address
the problem. Certainly, the defect should be reported to the developer. If there are multiple vulnerabilities
with unacceptably adverse consequences, it may be appropriate to consider a different package. If, however,
there is no other option or there are compelling reasons to use the package at hand, wrapping the software
is an option. Wrapping the software involves interposing another bit of code in front of the application. The
front-end code validates the input and only invokes the application if the input is well formed. Wrapping is
not simple and does involve risk. A completely effective wrapper must protect against all malformed input.
While fault injections can be effective in identifying a particular input or pattern that will compromise the
COTS code, it is considerably more difficult to explore completely the range of unacceptable inputs.

One relatively effective method of wrapping is to include the data validation rules of the COTS software in
the data validation rules of the database where the inputs to the routine are stored.

Security Considerations in Managing COTS Software 8
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

11 Look for Certification
Ideally, customers should be able to rely on third-party certification; however, there is no organization that
certifies the accuracy, usability, or security of software. ISO (International Organization for Standardization)
certification and CMMI (Capability Maturity Model Integration) appraisal speak to the quality of the
software vendor and their processes, which is certainly an indicator of software quality, but no organization
provides either rigorous standards or testing services that address specific packages. Nonetheless, it is
advisable to purchase from vendors who have demonstrated a commitment to quality and to validating this
through external assessment.

12 Pay Attention to Updates
Word spreads quickly when a vulnerability is discovered in a popular piece of COTS software. Word may
spread in the black hat community if they discover the approach. The security community will generally
spread the message to the public and the vendor when they either discover a vulnerability on their own or
learn of one discovered by the black hats. When software vendors discover a vulnerability on their own, they
generally do not go public until the fix is available. In any case, word spreads quickly and patches follow
quickly. It is absolutely critical for the systems management team to be diligent and quick in installing
updates.

13 Understand How the COTS Software Operates—To the Extent that You Can
Documentation for COTS software emphasizes what it does, not how it does it. It can be very difficult,
therefore, to develop any real understanding of what is going on inside the program, but there are frequently
externally visible artifacts. A snapshot of memory can tell you what processes are spawned when a COTS
product is running. Some of these are specific to the COTS product, but others are recognizable, and there
may be data on their provenance and vulnerability. For example, Zlib is a widely used data compression
algorithm. It is used in many applications (and distributed with some operating systems) to speed execution.
A flaw was found in late April of 2005 that rendered applications using Zlib vulnerable to a buffer-overflow
attack. The problem was fixed quickly, but how can you be sure that the COTS software you are using uses
the fixed version? If you see Zlib and cannot determine the version, you should contact the vendor.

Another aspect to watch is the files that are generated by the program. Some may be used as a cache while
the programs are running, others cache data between sessions, and others are simply forgotten and left
behind. What data do these include: are they encrypted or are they in clear text? The systems teams should
examine what is going on before, during, and after execution. Anything in memory or on disk is a potential
point of attack.

A commonly used stock-trader client application that can connect to multiple brokerages was found during
a recent review to store portfolio information in clear text during a session (encryption was a user option,
but not the default) and the files were left behind after execution if the application was aborted rather than
terminating normally.

14 Monitor
Major software products typically offer some sort of logging capability. Where logging functionality is not
built in, you can certainly add it. These logs should be reviewed periodically for anomalous behavior. One
common problem is that the logs are long, and the anomalies are rare. Automated analysis of the logs is
almost essential.

We commonly find enterprises that collect vast amounts of data that are ignored or that obfuscate the tiny
bit that is irrelevant. Often, the monitoring points are an afterthought, driven by convenience or based on
the developers’ incomplete understanding of security issues. The design of a monitoring system should be
given the same attention as any other new application development—monitoring systems are important. As
in all development projects, the design begins with requirements. The first consideration is what data can
be collected or what behaviors observed that would indicate that there might be a security problem and to

Security Considerations in Managing COTS Software 9
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

diagnose the problem of one exists. With custom code, there is almost complete flexibility in what can be
monitored, but with COTS, the capabilities of the package are constraining.

15 Audit
Periodically, step back and take a fresh look at systems from an objective perspective. This usually requires
an outside organization. Their mandate should be broad, but they should be given the information necessary
to focus quickly on the points that are critical in either technical or business terms.

16 Prepare in Advance for Failure
No matter how hard an organization works, failure is almost inevitable. Somehow, some way, the integrity
of a system may be compromised, a password may be lost, or private data may become public. However
diligent an organization is in building for and managing security, they should conduct a “what if” analysis
and think hard about the way failure might unfold and how the organization should respond. There should be
a technical response to the problem of updating the systems and getting them back online, but there should
be a business response as well. The decision of who speaks for the organization and how the organization
deals with impacted users should be considered in advance, when there is time and clear heads, rather than at
the time of crisis.

How to Think About COTS
COTS products are commercial off-the-shelf software and hardware. These are products that are ready-
made and sold as packages. While this paper is specifically focused on software, the discussion here pertains
equally to software services instantiated as hardware products—appliances for functions like search or
firewall. Similarly, many of the considerations here pertain to MOTS (modifiable off-the-shelf) software.
MOTS software is sold like COTS (or downloaded from a community site) but in a form that allows users to
modify the code, either through provision of the source code or a scripting language.

The concept of COTS is that of the single-purpose, monolithic program you buy in a shrink-wrapped box.
You take it out, load it on your computer (or server) click “run”, and it does what’s advertised—no muss, no
fuss, no risk.

The trust is quite misplaced. Few applications are written as monoliths anymore. They are more typically
architected as an orchestration of services that may or may not run on a single computer and may or may not
be shared with other applications.

COTS Programs Are Customizable
The largest COTS programs are ERP systems. An ERP system such as SAP or Peoplesoft is an immense
piece of software. While an ERP system comes with many stock processes representing standard ways of
doing things like inventory management and invoicing, every organization is different and, hence, every
deployment of the ERP software is different. The difference can be rooted in the idiosyncrasies of an
organization’s business processes, the specific sources, structure, and storage of the data, or any of a number
of other factors. Whatever the cause, you do not so much buy an ERP as build one using a toolkit. ERP
projects are legendary for their complexity and the rate of failure. Often ERP projects do not deliver the
desired functionality. So why is it assumed that they deliver the requisite security?

While an ERP package is COTS, a functional ERP system in fact represents a considerable mass of highly
complex, business-critical, semi-custom code.

While ERP systems are perhaps the purest example of COTS as a flexible framework rather than a rigid
application, this same consideration applies to many less extensive applications. The custom elements may
be scripts, database connections, programmatic interfaces, or configuration decisions.

Failure to configure COTS software for secure operation is a particularly common problem. Some common
COTS products, such as web servers, are sold for a whole range of applications from simple vanity web
pages to high-volume e-commerce sites. Vendors ship the packages with setup scripts that allow the user

Security Considerations in Managing COTS Software 10
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

to set up the software for these very different purposes with very different security considerations. Often,
COTS software with the potential for secure operation is compromised when the user selects the wrong
configuration options. This is particularly problematic when the setup script is easy to execute, allowing
inexperienced and unqualified people to do the installation, and when the insecure option is the default.

The flexibility of COTS packages can cause the same package to be used and operate in fundamentally
different ways. COTS does not mean consistent.

Key Observation

Different deployments of a COTS package may be used differently and behave very differently from a
security perspective. There are problems in all instances of a package, but it is essential to consider the
specifics.

COTS Software Runs in an Environment
COTS software is never the only software operating on a computer. There is an operating system and
mechanisms for communication to other systems, typically using IP (internet protocol). Beyond that, there is
usually a collection of services on the computer in various forms, which the COTS software uses. Security
is not just a function of the COTS program itself but of the COTS program operating as a system with these
other components.

Weaknesses in any of these other components can compromise security. Managing security for COTS
software means understanding what environment components are used and managing them as well.
Even when nothing has changed in the core COTS software, a change in these components can affect the
security of the COTS software, for better or worse. The most pressing areas of concern are the environment
components such as web servers that COTS applications use as a gateway to the outside world and other
systems. To the extent that the COTS rely on some aspect of these for any aspect of security or validation of
the inputs or identity, it is essential that the effect on the COTS applications is considered in evaluating any
proposed changes to components and the security impact of significant changes be tested.

The versions of COTS packages for different operating systems are often considerably different. The name
of the package is the same, the user experience may be the same, but below the surface, the difference can
be considerable. It is virtually impossible for a customer to determine the extent of these differences. For
example, is the same code used to validate input strings in the two packages?

Key Observation

The security of a COTS product is highly dependent on the specific environment on which it is installed.
Understand the differences between a COTS package running on one operating system versus another. Just
because a package is secure on operating system A does not mean that it is secure on operating system B, or
just because it is secure on operating system A with one particular revision level and configuration does not
mean that it is secure on all installations of that operating system.

COTS Software Operates in a Security Context
COTS software operates in a security context and must be viewed in that context. Few programs operate on
computers that are completely isolated from other systems. Accordingly, they must rely on a combination
of firewalls, authentication mechanisms, activity monitoring, audits, and policy and procedures for security
(hopefully built on an environment of secure code). The COTS software places requirements on the
security system (e.g., port access) and is built with specific assumptions about the security infrastructure.
Components like the firewall and single sign-on system are of particular concern.

Key Observation

Understand the interaction between the COTS software and the general security context. What
requirements does the COTS software impose on the security framework, and how do these requirements

Security Considerations in Managing COTS Software 11
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

affect other systems? How and to what extent does the COTS software rely on external security
components? Do systems like single sign-on potentially compromise the security of the COTS software?

COTS Software Is Often a Gateway or Point of Connection
COTS software is important. Nobody writes his own database software, web server, document management
system, etc. These major systems are central to an organization in two senses. They are central in the sense
that the business cannot operate without them, and they are central in that they connect to many other
applications. Every connection to the COTS applications is a potential avenue of attack. How do these
other systems authenticate themselves to the COTS application, and how do they send and receive data?
Conversely, the COTS software can potentially provide a source of information or point of access to attack
the connected systems.

Key Observation

Pay particular attention to COTS software that is used by other packages (e.g., web servers and database
systems) and how these connections provide a point of attack on the COTS software and how the connected
systems provide an avenue of attack on the COTS software.

COTS Software Is Not All Big Programs
The first things that come to mind when you think of COTS software are the major packages—ERP,
database, etc. Much COTS software, however, is less visible. A typical organization has several hundred
applications, and larger ones typically have more than a thousand, when you count different versions of the
same package. There are always the major systems that command attention and lines in the IT budgets, but
the bulk of the COTS software generally lies below the level of attention. These are often packages with a
limited number of users or that support functions that are ancillary to the key business activity.

For example, an accounting firm may use a lightweight graphics package for designing presentations
or ads. The key accounting packages, the organization’s internal financial systems, and the document
management system are more important to the business and contain more personally identifiable and
important information, but the small graphics package may access the internet to download upgrades or
access a library of clip art or shaders. Hence, they are a point of attack—not as critical as the core systems,
but still important.

Another source of COTS vulnerability are add-ins and extensions to major packages. MAYA is the most
widely used rendering package, commonly found in organizations doing photorealistic computer graphics.
Computer imaging and animation, however, is complex, because the world is complex. MAYA is excellent,
but, off-the-shelf, it may not have the specific effect the artist is looking for. Consequently, there are several
thousand plug-ins available, for everything from leaves, to fluids, to fire, to smoke. A real “MAYA”
installation typically includes a lot more than basic MAYA.

Finally, there are the little bits of COTS code—a custom control here, a DLL (dynamically-linked library)
there. These are used by other COTS packages and in code developed in-house. Every COTS installation
involves a review of these little components and often involves an upgrade to a newer version. These
changes, of course, affect other COTS programs.

In all organizations, the focus is on the security of the major systems that are central to the organization’s
business operations and those that contain confidential business and/or customer information. This is
appropriate. Failure of these systems has a larger impact, and their visibility makes them an easier and more
obvious point of attack. While the major systems are the major problem, they are not the only problem.

Key Observation

COTS software is ubiquitous; it has ramifications beyond the enterprise’s major systems.

Security Considerations in Managing COTS Software 12
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

A COTS Package Is Not a Process
Organizations do not install software for the sake of having software. They install software to implement and
automate a business process. Rarely is the entire process instantiated in a single bit of software. Certainly,
the input data must come from somewhere, and that may involve manual or semi-manual processes for data
entry, direct data capture from devices, data feeds from remote systems, data obtained from a data store that
is populated by other applications, or direct data transfer from other systems (push or pull). The output of the
package must go somewhere. It shows up in reports (printed or online), is sent directly to another application
(running locally or remotely), is put into a data store to be used by another application, or, perhaps, simply
archived. During operations, there may be manual processes or calls to other applications for additional data
access, validation of data, specialized calculation, or for many other reasons. Processes are much larger than
programs.

A process can be compromised through failure in any component or interception or corruption of the
information flow across any of the interstitial connections. When looking at a COTS product, it is essential
to think of it in context. It may be very well written code with every security bell and whistle and validated
through multiple audits, but if it does not play well with the other constituents of the process, the security is
not good enough.

Key Observation

Processes can be compromised even when every component is solid.

So, What Is the Right Way to Think of COTS Software?
When most individuals think of COTS software, they first focus on the major, business-critical packages.
Certainly it is important to look at these—they are typically large, complex, and with many points of
connection (indicators of risk), they contain and manage important information, and their failure would have
a serious adverse impact on the enterprise. In addressing the big packages, it is important to recognize that
not all instantiations are the same. Versions differ, there are often different installation options with security
implications, and many large packages involve substantial development—scripting, database design, etc.

The world of COTS software, however, does not end with the big packages. The major systems are the
starting point, but in the end it is better to adopt a broader definition of COTS—to think of COTS as simply
all the bits of code on your system that you did not write and where the source code is not available.

When looking at these bits, it is essential to think of them as living in a context:

• They are built on an environment of operating systems and communications components.

• They operate inside of and interact with a security framework.

• They make use of other small bits of COTS code that are frequently changed.

• Actual processes are much larger then the COTS products used in their construction.

Early application “architectures” consisted of isolated, self-contained applications operating in isolation.
Over time, the self-contained applications came to incorporate many off-the-shelf components but were
still compiled into a single executable. The ongoing evolution in architecture is towards service-oriented
architecture (SOA), in which processes are instantiated as the orchestration of services. Services are nasty
things from a security perspective. While they are smaller than applications, they may still be quite complex.
They may also run in different memory spaces, communicating with each other through computer buses,
local area networks, and the Internet. Each point of communication is a point of attack. The services may
also be under the control of an external party who may make changes without consideration of all users’
security or performance requirements and, perhaps, without even informing all users. Change can be frequent
and possibly chaotic. The emphasis may shift from COTS applications to COTS components of processes.
New methods of addressing security must evolve to address the new architectures.

AJAX (Asynchronous JavaScript and XML) is another emerging technology that introduces some new
risk issues. AJAX in intended to create systems with interfaces that are more responsive to user actions by
managing the exchange of small bits of data in the background so that it is available on the client computer

Security Considerations in Managing COTS Software 13
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

immediately when called for. The invisible data exchange should receive as much attention from a security
perspective as the more visible aspects of the web application design.

Some Summary Observations on Buying and Using COTS Code
COTS software presents a security risk that can be very difficult to measure or control. You cannot look
inside COTS software, you have little idea how it is constructed, you do not know what components have
been installed, and your ability to test and monitor COTS software is limited. Finally, your COTS software is
a visible and attractive target.

But avoiding using COTS software completely is not really an option. The challenge, then, is to buy, deploy,
and manage COTS wisely.

A considerable section of this paper is dedicated to a discussion of what COTS software is. This might seem,
on first consideration, an exercise in pedantry, but it is not. A subtle, nuanced understanding of COTS is
essential. COTS are not just the major packages in your system. COTS range from the platform components
(beginning with the operating system), to large applications and small, to bit of code imbedded in and
between other components. Adopt a broad definition of COTS and learn to recognize it when you see it.

Buying COTS software is an exercise in research. Most of that research will focus on whether the COTS
software will deliver the needed functionality, whether it will work in your environment, and what it costs.
Other considerations might address how well it integrates with your other software and whether your
organization is able to support it. The security of the software is often not an upfront consideration. The
assumption is made that COTS software is secure, until it is proven otherwise. This is not acceptable.
Consider security as part of the purchase process.

It is much easier, of course, to say that security should be considered than to do so effectively. Good,
objective information from a neutral party is not likely to be available. You must build the security case
from multiple sources, each of which is less than adequate. Do online research focusing on security-related
sites and user groups. Collect data on past security problems. Consult experts when necessary. Use this
background to formulate specific questions for the vendor. Research security from all available directions.

If you have built sufficient confidence to proceed with the purchase, do so cautiously. Run tests. Look at
how memory is used. Examine files that are created during execution, and find out how they are handled
after normal and abnormal termination. Are any files containing confidential information left behind in an
accessible place? What about files containing information that can be used to compromise the software?
Perform fault injection tests. Assume the software is insecure until proven otherwise.

Consider the context in which the software operates. Look at the platform components and the components
that interface to the COTS packages. How secure are they? Can a vulnerability in one of these compromise
the package? Can any deliver malformed input to the COTS package?

Looking at how the systems impacts COTS security is only one part of the problem. The other part is
to consider how a security problem with the COTS product will affect other IT systems. Consider the
environment in which the COTS system will operate; what may be secure in one instance, may not be in
another.

Protect yourself—legally and physically. Request guarantees from COTS vendors and, if possible,
indemnification. Where testing or risk indicate, wrap the software with a package that validates input and/or
output. Protect against failure.

Security is a consideration during the acquisition and installation of the COTS product and related
components. Done right, on deployment, the system is configured in accord with the best practices then
extant. As time passes, however, things change. The software may be updated as new attacks develop against
the software, an embedded component, or a relevant component of the IT infrastructure. Track changes and
adapt the security strategy accordingly.

Security Considerations in Managing COTS Software 14
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

While planning for change and maintaining the COTS system is critical, sometimes it is not possible to take
action in advance of an attack. It is critical, therefore, to put a monitoring system in place to detect failure as
soon as possible and to initiate the appropriate action. Build in monitoring systems to detect failure.

Despite best efforts, it is impossible to eliminate the risk of failure completely. Failure may happen. Assume
that failure will happen and have a plan in place. This plan should be comprehensive, ranging from repair to
the IT systems to addressing the affected parties on behalf of the enterprise. Be ready for failure.

Glossary

security vulnerability A design flaw or code bug that an attacker could
exploit to compromise a system.

security risk A potential threat to an enterprise represented by the
exploitation of a security vulnerability, generally
proportional to the likelihood the vulnerability will
be exploited and the impact on the enterprise if it is.

COTS Commercial off-the-shelf software—anything that
was bought rather than built.

monitor(ing) Collecting data on systems in real time, as they are
used and updated.

audit(ing) Conducting a periodic review of systems from basic
principles, generally involving an independent team
that may be within or external to the organization.

system modification attacks Attacks designed to alter, corrupt, or disable a
system, often to create a gateway for ready malicious
access.

invasion of privacy attacks Attacks designed to obtain access to private
information.

denial-of-service attacks Attacks designed to disable or degrade a system
through co-option of critical system resources.

antagonism attacks Attacks designed to damage the reputation of the
attacked organization.

References

[Glass 03] Glass, Robert L. Facts and Fallacies of Software
Engineering. Boston, MA: Addison-Wesley, 2003.

[Hoglund 04] Hoglund, Greg & McGraw, Gary. Exploiting
Software: How to Break Code. Boston, MA:
Addison-Wesley Professional, 2004 (ISBN
0-201-78695-8).

[Kaner 04] Cem Kaner. “Liability for Defective Content5.” ACM
SIGDOC’04, Memphis, TN, October 10–13, 2004.

[Kaner 99] Kaner, Cem. “A Bad Law for Bad Software—

And What We Can Do About It6.” Silicon Valley
Software Quality Association, Cupertino, CA, April
13, 1999; also at Boston Area Software Process
Improvement Network, Boston, April 18, 1999.

http://www.kaner.com/pdfs/sigdocContent.pdf
http://www.kaner.com/pdfs/ssqa1999.pdf
http://www.kaner.com/pdfs/ssqa1999.pdf

Security Considerations in Managing COTS Software 15
ID: 623-BSI | Version: 9 | Date: 1/5/07 5:07:55 PM

[Schneier 06] Schneier, Bruce. “Zero-Day Microsoft PowerPoint

Vulnerability7.” Schneier on Security Weblog, July
17, 2006.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://www.schneier.com/blog/archives/2006/07/zeroday_microso.html
http://www.schneier.com/blog/archives/2006/07/zeroday_microso.html
mailto:copyright@cigital.com

